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DERIVATIVES AND THE INFORMATION THEY PROVIDE

Knowing information about the first and second derivatives of a function can tell you a lot
of information.
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WORKING TOWARD AN EASIER PATH

Suppose we have the function f(x) = c.
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This means that the derivative of any constant function is zero. That is
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WORKING TOWARD AN EASIER PATH

Suppose now we have the function f(x) = x.
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WORKING TOWARD AN EASIER PATH

Continuing with powers of x, take f(x) = x2.
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WORKING TOWARD AN EASIER PATH

One more, for good measure: f(x) = x3.
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Section 3.1 - Shortcuts to Finding Derivatives
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Section 3.1 - Shortcuts to Finding Derivatives

CONSTANT MULTIPLE RULE

THEOREM
Let ¢ be a real number,

;([cf(x)] = cf (x).
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DERIVATIVES OF SUMS AND DIFFERENCES

THEOREM

d / /
() +g(x)] = F(x) + g (x)

d / /
2 [[(¥) = g(x)] = F(x) — g (x)
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Section 3.1 - Shortcuts to Finding Derivatives

DERIVATIVE OF THE EXPONENTIAL FUNCTION

DEFINITION
e is the number such that

h—=0 h

Math 130 - Essentials of Calculus Computing Derivatives 7 October 2019 10/10



Section 3.1 - Shortcuts to Finding Derivatives

DERIVATIVE OF THE EXPONENTIAL FUNCTION

DEFINITION

e is the number such that

If f(x) = &, then we have

f/(X) _ f(X+h)_f(X)

Math 130 - Essentials of Calculus Computing Derivatives 7 October 2019 10/10



Section 3.1 - Shortcuts to Finding Derivatives

DERIVATIVE OF THE EXPONENTIAL FUNCTION

DEFINITION

e is the number such that

’ eh—1 1
o h
If f(x) = &, then we have
_ f(x+h) —f(x) eth — &
! —
F(x) flpino h B /llno h

Math 130 - Essentials of Calculus Computing Derivatives 7 October 2019 10/10



Section 3.1 - Shortcuts to Finding Derivatives

DERIVATIVE OF THE EXPONENTIAL FUNCTION

DEFINITION
e is the number such that
lim e~ 1 =1
o h
If f(x) = &, then we have
f(x+h)—f(x) . eth—e
! —
F)- = Ay h A h
_eX(e-1)
o /lwgno h

Math 130 - Essentials of Calculus Computing Derivatives 7 October 2019 10/10



Section 3.1 - Shortcuts to Finding Derivatives

DERIVATIVE OF THE EXPONENTIAL FUNCTION

DEFINITION
e is the number such that

If f(x) = &, then we have

Math 130 - Essentials of Calculus Computing Derivatives 7 October 2019 10/10



Section 3.1 - Shortcuts to Finding Derivatives

DERIVATIVE OF THE EXPONENTIAL FUNCTION

DEFINITION
e is the number such that
lim e~ 1 =1
o h
If f(x) = &, then we have
f(x+h)—f(x) . eth—e
! —
F)- = Ay h A h
: X(eh — 1) X 1 eh -1 X
o /lwgno h =€ /Llno h 1

Math 130 - Essentials of Calculus Computing Derivatives 7 October 2019 10/10



Section 3.1 - Shortcuts to Finding Derivatives

DERIVATIVE OF THE EXPONENTIAL FUNCTION

DEFINITION
e is the number such that
lim e~ 1 =1
o h
If f(x) = &, then we have
f(x+h)—f(x) . eth—e
! —
F)- = Ay h A h
. X(eh B 1) X 1 eh -1 X X
o /lwgno h _GILTO h 1=e

Math 130 - Essentials of Calculus Computing Derivatives 7 October 2019 10/10



Section 3.1 - Shortcuts to Finding Derivatives

DERIVATIVE OF THE EXPONENTIAL FUNCTION

DEFINITION
e is the number such that
lim e~ 1 =1
o h
If f(x) = &, then we have
f(x+h)—f(x) . eth—e
! —
F)- = Ay h A h
. X(eh B 1) X 1 eh -1 X X
o /lwgno h _GILTO h 1=e
PROPERTY
d X X
dx ] =e

Math 130 - Essentials of Calculus Computing Derivatives 7 October 2019 10/10



	Section 2.4 - The Derivative as a Function
	Section 3.1 - Shortcuts to Finding Derivatives

